YOLOv5改进系列之增加小目标检测层

 更新时间:2022年09月14日 14:57:36   作者:加勒比海带66  
yolov5出来已经很长时间了,所以有关yolov5的一些详细介绍在这里就不一一介绍了,下面这篇文章主要给大家介绍了关于YOLOv5改进系列之增加小目标检测层的相关资料,需要的朋友可以参考下

小目标检测一直以来是CV领域的难点之一,那么,YOLOv5该如何增加小目标检测层呢?

YOLOv5代码修改————针对微小目标检测

1.YOLOv5算法简介

YOLOv5主要由输入端、Backone、Neck以及Prediction四部分组成。其中:

(1) Backbone:在不同图像细粒度上聚合并形成图像特征的卷积神经网络。

(2) Neck:一系列混合和组合图像特征的网络层,并将图像特征传递到预测层。

(3) Head: 对图像特征进行预测,生成边界框和并预测类别。

检测框架:

2.原始YOLOv5模型

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

若输入图像尺寸=640X640,

# P3/8 对应的检测特征图大小为80X80,用于检测大小在8X8以上的目标。

# P4/16对应的检测特征图大小为40X40,用于检测大小在16X16以上的目标。

# P5/32对应的检测特征图大小为20X20,用于检测大小在32X32以上的目标。

3.增加小目标检测层

# parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 
# anchors
anchors:
  - [5,6, 8,14, 15,11]  #4
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],   #160*160
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],  #80*80
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]], #40*40
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9   20*20
  ]
 
# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],  #20*20
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 13     40*40
 
   [-1, 1, Conv, [512, 1, 1]], #40*40
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   80*80
   [-1, 3, BottleneckCSP, [512, False]],  # 17 (P3/8-small)  80*80
 
   [-1, 1, Conv, [256, 1, 1]], #18  80*80
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #19  160*160
   [[-1, 2], 1, Concat, [1]], #20 cat backbone p2  160*160
   [-1, 3, BottleneckCSP, [256, False]], #21 160*160
 
   [-1, 1, Conv, [256, 3, 2]],  #22   80*80
   [[-1, 18], 1, Concat, [1]], #23 80*80
   [-1, 3, BottleneckCSP, [256, False]], #24 80*80
 
   [-1, 1, Conv, [256, 3, 2]], #25  40*40
   [[-1, 14], 1, Concat, [1]],  # 26  cat head P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 27 (P4/16-medium) 40*40
 
   [-1, 1, Conv, [512, 3, 2]],  #28  20*20
   [[-1, 10], 1, Concat, [1]],  #29 cat head P5  #20*20
   [-1, 3, BottleneckCSP, [1024, False]],  # 30 (P5/32-large)  20*20
 
   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(p2, P3, P4, P5)
  ]
 

# 新增加160X160的检测特征图,用于检测4X4以上的目标。

改进后,虽然计算量和检测速度有所增加,但对小目标的检测精度有明显改善。

总结

到此这篇关于YOLOv5改进系列之增加小目标检测层的文章就介绍到这了,更多相关YOLOv5增加小目标检测层内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python模块的安装以及安装失败的解决方法

    python模块的安装以及安装失败的解决方法

    Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句。模块让你能够有逻辑地组织你的 Python 代码段。把相关的代码分配到一个模块里能让你的代码更好用,更易懂。模块能定义函数,类和变量,模块里也能包含可执行的代码
    2021-11-11
  • 聊聊Python中的浮点数运算不准确问题

    聊聊Python中的浮点数运算不准确问题

    这篇文章主要介绍了聊聊Python中的浮点数运算不准确问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 使用PyOpenGL绘制三维坐标系实例

    使用PyOpenGL绘制三维坐标系实例

    今天小编就为大家分享一篇使用PyOpenGL绘制三维坐标系实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python实现根据窗口标题调用窗口的方法

    python实现根据窗口标题调用窗口的方法

    这篇文章主要介绍了python实现根据窗口标题调用窗口的方法,涉及Python操作窗口的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • Python中的sys模块、random模块和math模块

    Python中的sys模块、random模块和math模块

    这篇文章介绍了Python中的sys模块、random模块和math模块,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • Python中enumerate()函数详细分析(附多个Demo)

    Python中enumerate()函数详细分析(附多个Demo)

    Python的enumerate()函数是一个内置函数,主要用于在遍历循环中获取每个元素的索引以及对应的值,这篇文章主要介绍了Python中enumerate()函数的相关资料,需要的朋友可以参考下
    2024-10-10
  • 详解Python遍历列表时删除元素的正确做法

    详解Python遍历列表时删除元素的正确做法

    这篇文章主要介绍了详解Python遍历列表时删除元素的正确做法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • 解决pytorch中的kl divergence计算问题

    解决pytorch中的kl divergence计算问题

    这篇文章主要介绍了解决pytorch中的kl divergence计算问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • python命令行解析之parse_known_args()函数和parse_args()使用区别介绍

    python命令行解析之parse_known_args()函数和parse_args()使用区别介绍

    这篇文章主要介绍了python命令行解析之parse_known_args()函数和parse_args()使用介绍,需要的朋友可以参考下
    2018-01-01
  • Python基于numpy灵活定义神经网络结构的方法

    Python基于numpy灵活定义神经网络结构的方法

    这篇文章主要介绍了Python基于numpy灵活定义神经网络结构的方法,结合实例形式分析了神经网络结构的原理及Python具体实现方法,涉及Python使用numpy扩展进行数学运算的相关操作技巧,需要的朋友可以参考下
    2017-08-08

最新评论