python根据json数据画疫情分布地图的详细代码

 更新时间:2022年12月27日 11:33:54   作者:阳862  
这篇文章主要介绍了python根据json数据画疫情分布地图的详细代码,掌握使用pyecharts构建基础的全国地图可视化图表,本文结合示例代码给大家介绍的非常详细,需要的朋友可以参考下

注:数据集在文章最后

一.基础地图使用

1.掌握使用pyecharts构建基础的全国地图可视化图表

演示

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
    ("北京",99),
    ("上海",199),
    ("湖南",299),
    ("台湾",199),
    ("安徽",299),
    ("广州",399),
    ("湖北",599)
]
map.add("地图",data,"china")
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True
 
    )
)
map.render("1.html")

结果是

这里有个问题

 is_show=True表示展示图例,但是不准怎么办?
这就需要手动校准范围

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
    ("北京",99),
    ("上海",199),
    ("湖南",299),
    ("台湾",199),
    ("安徽",299),
    ("广州",399),
    ("湖北",599)
]
map.add("地图",data,"china")
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000以上", "color": "#990033"},
 
        ]
 
    )
)
map.render("1.html")

结果是

 这样就可以了

再解释一下颜色的设置

这样就可以查询相应的颜色

二.疫情地图——国内疫情地图

1.案例效果

演示

 利用json在线在线解析工具可以看到

 那么我们就可以知道该怎么去提取

#从字典中取出省份数据
province_data_list=data_dict["areaTree"][0]["children"]

代码

import json
from pyecharts.charts import Map
from pyecharts.options import *
#读取文件
f=open("D:/疫情.txt","r",encoding="utf-8")
data=f.read()
#关闭文件
f.close()
#获取各省数据
#将字符串json转化为python的字典
data_dict=json.loads(data)
#从字典中取出省份数据
province_data_list=data_dict["areaTree"][0]["children"]
#组装每个省份和确诊人数为元组,并各个省的数据都封装如列表
data_list=[]#绘图需要用到数据列表
for province_data in province_data_list:
    province_name=province_data["name"]#省份名称
    province_confirm=province_data["total"]["confirm"]#确诊人数
    data_list.append((province_name,province_confirm))#这里注意列表里面嵌套的是元组
print(f"{type(data_list)}\n{data_list}")
 
#创建地图对象
map=Map()
#添加数据
map.add("各省份确诊人数",data_list,"china")
#设置全局配置,定制分段到1视觉映射
map.set_global_opts(
    title_opts=TitleOpts("全国疫情地图",pos_left="center",pos_bottom="1%"),
    visualmap_opts=VisualMapOpts(
        is_show=True,#是否显示
        is_piecewise=True,#是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000以上", "color": "#990033"},
 
        ]
 
    )
)
map.render("全国疫情地图.html")

结果是

三.疫情地图——省级疫情地图

以河南省为例

代码

import json
from pyecharts.charts import Map
from pyecharts.options import *
 
f=open("D:/疫情.txt","r",encoding="utf-8")
data=f.read()
#关闭文件
f.close()
#json数据转化为python字典
data_dict=json.loads(data)
#取到河南省数据
cities_data=data_dict["areaTree"][0]["children"][3]["children"]
#准备数据为元组并放入list
data_list=[]
 
for city_data in cities_data:
    city_name=city_data["name"]+"市"
    city_confirm=city_data["total"]["confirm"]
    data_list.append((city_name,city_confirm))
#构建地图
map=Map()
map.add("河南省疫情分布",data_list,"河南")
#设置全局选项
map.set_global_opts(
    title_opts=TitleOpts(title="河南疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,#是否显示
        is_piecewise=True,#是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000以上", "color": "#990033"},
 
        ]
    )
)
map.render("河南疫情地图.html")

结果是

有个问题:济源市因为数据集中没有相应数据,所以需要我们手动加上去

这样就可以了

结果是

 四.数据集

链接: https://pan.baidu.com/s/10eqeAEPjZC9PohlSnMOkJg?pwd=sjte 

提取码: sjte 

到此这篇关于python根据json数据画疫情分布地图的详细代码的文章就介绍到这了,更多相关python画疫情分布地图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python视频爬虫实现下载头条视频功能示例

    Python视频爬虫实现下载头条视频功能示例

    这篇文章主要介绍了Python视频爬虫实现下载头条视频功能,涉及Python正则匹配、网络传输及文件读写等相关操作技巧,需要的朋友可以参考下
    2018-05-05
  • 对python pandas中 inplace 参数的理解

    对python pandas中 inplace 参数的理解

    这篇文章主要介绍了对python pandas中 inplace 参数的理解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • win10子系统python开发环境准备及kenlm和nltk的使用教程

    win10子系统python开发环境准备及kenlm和nltk的使用教程

    这篇文章主要介绍了win10子系统python开发环境准备及kenlm和nltk的使用教程,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • Ubuntu安装Jupyter Notebook教程

    Ubuntu安装Jupyter Notebook教程

    这篇文章主要为大家详细介绍了Ubuntu安装Jupyter Notebook教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-10-10
  • Python 自动登录淘宝并保存登录信息的方法

    Python 自动登录淘宝并保存登录信息的方法

    这篇文章主要介绍了Python 自动登录淘宝并保存登录信息的方法,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • python集合比较(交集,并集,差集)方法详解

    python集合比较(交集,并集,差集)方法详解

    python的set,是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素本文讲述了python中set集合的比较方法包括交集,并集,差集
    2018-09-09
  • Pytorch框架之one_hot编码函数解读

    Pytorch框架之one_hot编码函数解读

    这篇文章主要介绍了Pytorch框架之one_hot编码函数解读,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • 用Python实现一个简单的用户系统

    用Python实现一个简单的用户系统

    大家好,本篇文章主要讲的是用Python实现一个简单的用户系统,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • Python中的远程调试与性能优化技巧分享

    Python中的远程调试与性能优化技巧分享

    Python 是一种简单易学、功能强大的编程语言,广泛应用于各种领域,包括网络编程、数据分析、人工智能等,在开发过程中,我们经常会遇到需要远程调试和性能优化的情况,本文将介绍如何利用远程调试工具和性能优化技巧来提高 Python 应用程序的效率和性能
    2024-05-05
  • python进阶学习实时目标跟踪示例详解

    python进阶学习实时目标跟踪示例详解

    这篇文章主要为大家介绍了python进阶学习实时目标跟踪示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03

最新评论