python list与numpy数组效率对比

 更新时间:2023年02月01日 08:30:26   作者:强殖装甲凯普  
这篇文章主要介绍了python list与numpy数组效率对比分析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

前言

因为经常一训练就是很多次迭代,所以找到效率比较高的操作能大大缩短运行时间,但这方面资料不足,所以自己记录总结一下,有需要再补充

索引效率与内存占用比较

有时候我需要一个数组,然后可能会频繁从中索引数据,那么我选择list还是numpy array呢,这里做了一个简单的实验进行比较,环境python 3.6

import random
import numpy as np
import time
import sys
# import matplotlib
# matplotlib.use('agg')
import matplotlib.pyplot as plt
from collections import deque

start = time.time()
length = []

list_size = []
array_size = []
deque_size = []

list_time = []
array_time = []
deque_time = []

for l in range(5, 15000, 5):
    print(l)
    length.append(l)
    a = [1] * l
    b = np.array(a)
    c = deque(maxlen=l)
    for i in range(l):
        c.append(1)

    # print('list的size为:{}'.format(sys.getsizeof(a)))
    # print('array的size为:{}'.format(sys.getsizeof(b)))
    # print('deque的size为:{}'.format(sys.getsizeof(c)))
    list_size.append(sys.getsizeof(a))
    array_size.append(sys.getsizeof(b))
    deque_size.append(sys.getsizeof(c))

    for i in range(3):
        if i == 0:
            tmp = a
            name = 'list'
        elif i == 1:
            tmp = b
            name = 'array'
        else:
            tmp = c
            name = 'deque'

        s = time.time()
        for j in range(1000000):
            x = tmp[random.randint(0, len(a)-1)]
        duration = time.time() - s

        if name == 'list':
            list_time.append(duration)
        elif name == 'array':
            array_time.append(duration)
        else:
            deque_time.append(duration)

duration = time.time() - start
time_list = [0, 0, 0]
time_list[0] = duration // 3600
time_list[1] = (duration % 3600) // 60
time_list[2] = round(duration % 60, 2)
print('用时:' + str(time_list[0]) + ' 时 ' + str(time_list[1]) + '分' + str(time_list[2]) + '秒')

fig = plt.figure()

ax1 = fig.add_subplot(211)
ax1.plot(length, list_size, label='list')
ax1.plot(length, array_size, label='array')
ax1.plot(length, deque_size, label='deque')
plt.xlabel('length')
plt.ylabel('size')
plt.legend()

ax2 = fig.add_subplot(212)
ax2.plot(length, list_time, label='list')
ax2.plot(length, array_time, label='array')
ax2.plot(length, deque_time, label='deque')
plt.xlabel('length')
plt.ylabel('time')
plt.legend()

plt.show()

对不同大小的list,numpy array和deque进行一百万次的索引,结果为

可以看出,numpy array对内存的优化很好,长度越大,其相比list和deque占用内存越少。

list比deque稍微好一点。因此如果对内存占用敏感,选择优先级:numpy array>>list>deque

时间上,在15000以下这个长度,list基本都最快。其中

  • 长度<1000左右时,deque跟list差不多,选择优先级:list≈ \approx≈deque>numpy array;
  • 长度<9000左右,选择优先级:list>deque>numpy array;
  • 长度>9000左右,选择优先级:list>numpy array>deque;

不过时间上的差距都不大,几乎可以忽略,差距主要体现在内存占用上。因此如果对内存不敏感,list是最好选择。

整个实验使用i7-9700,耗时2.0 时 36.0分20.27秒,如果有人愿意尝试更大的量级,更小的间隔,欢迎告知我结果。

添加效率比较

numpy的数组没有动态改变大小的功能,因此这里numpy数据只是对其进行赋值。

import numpy as np
import time
from collections import deque

l = 10000000
a = []
b = np.zeros(l)
c = deque(maxlen=l)
for i in range(3):
    if i == 0:
        tmp = a
        name = 'list'
    elif i == 1:
        tmp = b
        name = 'array'
    else:
        tmp = c
        name = 'deque'

    start = time.time()
    if name == 'array':
        for j in range(l):
            tmp[j] = 1
    else:
        for j in range(l):
            tmp.append(1)
    duration = time.time() - start
    time_list = [0, 0, 0]
    time_list[0] = duration // 3600
    time_list[1] = (duration % 3600) // 60
    time_list[2] = round(duration % 60, 2)
    print(name + '用时:' + str(time_list[0]) + ' 时 ' + str(time_list[1]) + '分' + str(time_list[2]) + '秒')

结果为:

list用时:0.0 时 0.0分1.0秒
array用时:0.0 时 0.0分1.14秒
deque用时:0.0 时 0.0分0.99秒

可以看出,只有在非常大的量级上才会出现区别,numpy array的赋值是最慢的,list和deque差不多

但平时这些差距几乎可以忽略。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python解析HTML并提取span标签中的文本

    python解析HTML并提取span标签中的文本

    在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或其他元素,在Python中,我们可以通过使用BeautifulSoup或lxml等库来解析HTML并提取span标签中的文本
    2024-12-12
  • ActiveMQ:使用Python访问ActiveMQ的方法

    ActiveMQ:使用Python访问ActiveMQ的方法

    今天小编就为大家分享一篇ActiveMQ:使用Python访问ActiveMQ的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 在Python中执行异常处理的基本步骤

    在Python中执行异常处理的基本步骤

    异常处理是编写健壮、可靠和易于调试的Python代码中不可或缺的一部分,下面这篇文章主要给大家介绍了关于在Python中执行异常处理的基本步骤,需要的朋友可以参考下
    2024-08-08
  • 一文教会你用Python绘制动态可视化图表

    一文教会你用Python绘制动态可视化图表

    数据可视化是数据科学中关键的一步,下面这篇文章主要给大家介绍了关于如何利用Python绘制动态可视化图表的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-05-05
  • 将Django项目迁移到linux系统的详细步骤

    将Django项目迁移到linux系统的详细步骤

    这篇文章主要介绍了将Django项目迁移到linux系统的详细步骤,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-03-03
  • 通过python模糊匹配算法对两个excel表格内容归类

    通过python模糊匹配算法对两个excel表格内容归类

    这篇文章主要介绍了通过python模糊匹配算法对两个excel表格内容归类,比如两个不同的工程项目针对的对象都是A,那么就需要将这两个工程项目归类到A当中,可以减少很大一部分工作量,,需要的朋友可以参考下
    2023-03-03
  • 浅谈图像处理中掩膜(mask)的意义

    浅谈图像处理中掩膜(mask)的意义

    今天小编就为大家分享一篇浅谈图像处理中掩膜(mask)的意义,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • django 中的聚合函数,分组函数,F 查询,Q查询

    django 中的聚合函数,分组函数,F 查询,Q查询

    这篇文章主要介绍了django 中的聚合函数,分组函数,F 查询,Q查询,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python3标准库总结

    Python3标准库总结

    在本篇内容中我们给大家总结了关于Python3标准库的相关内容,需要的朋友们跟着学习下。
    2019-02-02
  • 对python中词典的values值的修改或新增KEY详解

    对python中词典的values值的修改或新增KEY详解

    今天小编就为大家分享一篇对python中词典的values值的修改或新增KEY详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01

最新评论