Sklearn调优之网格搜索与随机搜索原理详细分析

 更新时间:2023年02月11日 15:12:27   作者:Laurence Geng  
这篇文章主要介绍了Sklearn调优之网格搜索与随机搜索原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

前言

超参调优是“模型调优”(Model Tuning)阶段最主要的工作,是直接影响模型最终效果的关键步骤,然而,超参调优本身却是一项非常低级且枯燥的工作,因为它的策略就是:不断变换参数值,一轮一轮地去“试”,直到找出结果最好的一组参数。显然,这个过程是可以通过编程封装成自动化的工作,而不是靠蛮力手动去一遍一遍的测试。为此,Sklearn提供了多种(自动化)超参调优方法(官方文档),其中网格搜索(Grid Search)和随机搜索(Randomized Search)是最基础也是最常用的两个:

方法名称对应类/函数官方文档
网格搜索(Grid Search)sklearn.model_selection.GridSearchCV文档链接
随机搜索(Randomized Search)sklearn.model_selection.RandomizedSearchCV文档链接

对应类/函数的后缀CV是Cross-Validation的意思,因为它们每尝试一种超参组合时,都会使用Cross-Validation进行效果评估,所以调用它们时也都需要显式指定cv参数,即:验证的轮次(K-Fold的份数)。

网格搜索(Grid Search)

网格搜索(Grid Search)的逻辑其实非常简单,就是由开发者针对每个超参设定多个值去尝试,找出效果最好的那个,由于超参会有很多个,而每一个超参又有多个尝试值,所以就变成了一个“排列组合”问题。例如我们想针对两个超参进行调优,第一个超参设置了2个尝试值,第二个超参设置了3个尝试值,则超参设置总共会有 2 × 3 = 6 种组合,理论上模型要被训练6次,如果再加上交叉验证的轮次参数cv,假设cv=3,则总得的训练次数将变为:6 × 3 = 18 次。以下是《Hands-On ML, 2nd Edition》一书中提供的GridSearchCV示例代码:

from sklearn.model_selection import GridSearchCV
param_grid = [
    {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
    {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
]
forest_reg = RandomForestRegressor()
grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                           scoring='neg_mean_squared_error',
                           return_train_score=True)
grid_search.fit(housing_prepared, housing_labels)

在这份示例代码中,作者提供针对bootstrap、n_estimators和max_features三个超参,给出了两套参数设定:

第一套:{'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]} 总计:3 × 4 = 12 种组合

第二套:{'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]} 总计:1 × 2 × 3 = 6 种组合

合在一起一共:12 + 6 = 18 种组合,加上交叉验证设定cv=5,所以最终将训练 18 × 5 = 90 次!这里我们可以看到param_grid是一个list,里面每一个元素是一个dict,一个dict就代表了一套参数设定,每套参数设定根据赋值情况又会产生多种参数组合。其实上面两套组合也可以用下面的一套设定覆盖:

param_grid = [
    {'bootstrap': [True, False], 'n_estimators': [3, 10, 30], 'max_features': [2, 3, 4, 6, 8]}
]

但在此情况下,总的训练次数将会变为:(2 × 3 × 5) × 5 = 150 次。由此可见,Sklearn这种允许设定多套参数的设计(即一个list下可配置多个dict)还是有可取之处,会方便开发人员更具经验设定最有希望的取值集合,减少训练次数。

随机搜索(Randomized Search)

网格搜索适用于参数组合数比较少的情况,当参数组合大到一定程度后,模型训练所占用的资源和持续时间将会超用户的可接受范围,此时往往就要改用随机搜索(Randomized Search)了。随机搜索的工作原理和网格搜索其实差不多,都是“暴力尝试”,不同之处在于:网格搜索的参数取值集合是用户设定的,而随机搜索的参数取值则是指定好区间(最大值和最小值)由随机数发生器随机生成的,而想要生成多少种组合是可以设置的。以下是《Hands-On ML, 2nd Edition》一书中提供的RandomizedSearchCV示例代码:

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
param_distribs = {
        'n_estimators': randint(low=1, high=200),
        'max_features': randint(low=1, high=8),
    }
forest_reg = RandomForestRegressor(random_state=42)
rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,
                                n_iter=10, cv=5, scoring='neg_mean_squared_error', random_state=42)
rnd_search.fit(housing_prepared, housing_labels)

在这份代码中,作者针对n_estimators和max_features两个超参分别设定了 1 ~ 200 和 1 ~ 8 的取值区间,然后通过设定参数n_iter=10将参数组合数设定为10,当然,叠加上交叉验证cv=5后,实际的训练就是 5 × 10 = 50 次了。

到此这篇关于Sklearn调优之网格搜索与随机搜索原理详细分析的文章就介绍到这了,更多相关Sklearn网格搜索与随机搜索内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python DataFrame的shift()方法的使用

    python DataFrame的shift()方法的使用

    在python数据分析中,可以使用shift()方法对DataFrame对象的数据进行位置的前滞、后滞移动,本文主要介绍了python DataFrame的shift()方法的使用,感兴趣的可以了解一下
    2022-03-03
  • python not运算符的实例用法

    python not运算符的实例用法

    在本篇文章里小编给大家整理了一篇关于python not运算符的实例用法,有需要的朋友们可以学习参考下。
    2021-06-06
  • Window10上Tensorflow的安装(CPU和GPU版本)

    Window10上Tensorflow的安装(CPU和GPU版本)

    这篇文章主要介绍了Window10上Tensorflow的安装(CPU和GPU版本),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • python生成指定长度的随机数密码

    python生成指定长度的随机数密码

    这篇文章主要介绍了python生成指定长度的随机密码示例,密码使用数字和字母组合,大家参考使用吧
    2014-01-01
  • Python中出现IndentationError:unindent does not match any outer indentation level错误的解决方法

    Python中出现IndentationError:unindent does not match any outer

    今天在网上copy的一段代码,代码很简单,每行看起来该缩进的都缩进了,运行的时候出现了如下错误,IndentationError: unindent does not match any outer indentation level,如果看起来缩进正常所有tab与空格混用就会出现这个问题
    2019-01-01
  • Python时间处理模块time和datetime详解

    Python时间处理模块time和datetime详解

    本文详细介绍了Python中常用的时间处理模块time和datetime,time模块提供多种时间获取和转换功能,datetime模块则在time的基础上增加了日期和时间的组合处理,如datetime.now()获取当前日期时间,两个模块在日常编程中非常有用,尤其是在需要时间日期计算和转换的场景下
    2024-10-10
  • 详解Python循环作用域与闭包

    详解Python循环作用域与闭包

    这篇文章主要介绍了Python循环作用域与闭包,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • 使用Python实现一键往Word文档的表格中填写数据

    使用Python实现一键往Word文档的表格中填写数据

    在工作中,我们经常遇到将Excel表中的部分信息填写到Word文档的对应表格中,以生成报告,方便打印,所以本文小编就给大家介绍了如何使用Python实现一键往Word文档的表格中填写数据,文中有详细的代码示例供大家参考,需要的朋友可以参考下
    2023-12-12
  • Python使用Selenium获取Web页面信息的流程步骤

    Python使用Selenium获取Web页面信息的流程步骤

    在 Web 自动化测试和数据抓取中,获取页面信息是一个基本且重要的操作,通过 Selenium,您可以轻松地获取页面的各种信息,这些信息不仅可以用于验证测试结果,还可以用于数据分析和处理,所以本文给大家介绍了Python使用Selenium获取Web页面信息的流程步骤
    2025-03-03
  • 2行Python代码实现给pdf文件添加水印

    2行Python代码实现给pdf文件添加水印

    你们在给PDF文件添加水印时,还在手动一页页添加吗?本文小编为大家带来了一个更方便的方法,即用Python的2行代码来实现,感兴趣的小伙伴可以学习一下
    2022-02-02

最新评论