tensorflow转onnx的实现方法
安装tf2onnx以及onnxruntime
pip install onnxruntime pip install tf2onnx
tf 转为onnx步骤为如下:
- 将tf动态图冻结,生成冻结后的pb文件
- 使用tf2onnx 将pb文件转为onnx文件
将tf动态图冻结使用如下代码:
def export_frozen_graph(model, model_dir, name_pb) :
f = tf.function(lambda x: model(inputs=x))
f = f.get_concrete_function(x=(tf.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype)))
frozen_func = convert_variables_to_constants_v2(f)
frozen_func.graph.as_graph_def()
print("-" * 50)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
logdir=model_dir,
name=name_pb,
as_text=False)使用tf2onnx 将pb文件转为onnx文件时需要在终端执行,需要指出的是大部分tf模型的输入layout都是NHWC,而ONNX模型的输入layout为NCHW,因此建议在转换的时候加上--inputs-as-nchw这个选项,其他选项可以参考文档,非常详细,具体运行命令如下:
python -m tf2onnx.convert --input yolo.pb --output model.onnx --outputs Identity:0,Identity_1:0,Identity_2:0 --inputs x:0 --inputs-as-nchw x:0 --opset 10
参数说明:
- input 输入的pb模型
- output 输出的onnx文件名
- inputs 输入层名字,有多个输入时,中间用逗号隔开
- outputs 输出层名字,有多个输出时,中间用逗号隔开
- –inputs-as-nchw 将输入作为nchw格式,注意加上输入层名字
- –opset onnx 版本号
通过程序直接转:
tf2onnx.convert.from_keras(model, inputs_as_nchw=[model.inputs[0].name], output_path=model_filepath + 'yolo.onnx') --opset 10
到此这篇关于tensorflow转onnx的实现方法的文章就介绍到这了,更多相关tensorflow转onnx内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Tensorflow 1.0之后模型文件、权重数值的读取方式
今天小编就为大家分享一篇Tensorflow 1.0之后模型文件、权重数值的读取方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-02-02
python GUI库图形界面开发之PyQt5 MDI(多文档窗口)QMidArea详细使用方法与实例
这篇文章主要介绍了python GUI库图形界面开发之PyQt5 MDI(多文档窗口)QMidArea详细使用方法与实例,需要的朋友可以参考下2020-03-03
Python3开发实例之非关系型图数据库Neo4j安装方法及Python3连接操作Neo4j方法实例
这篇文章主要介绍了Python3开发实例之非关系型图数据库Neo4j安装方法及Python3连接操作Neo4j方法实例,需要的朋友可以参考下2020-03-03


最新评论