Python 使用tf-idf算法计算文档关键字权重并生成词云的方法

 更新时间:2023年03月16日 10:11:52   作者:虚坏叔叔  
这篇文章主要介绍了Python 使用tf-idf算法计算文档关键字权重,并生成词云,本文通过实例代码给大家介绍的非常想详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

Python 使用tf-idf算法计算文档关键字权重,并生成词云

1. 根据tf-idf计算一个文档的关键词或者短语:

代码如下:

注意需要安装pip install sklean

from re import split
from jieba.posseg import dt
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter
from time import time
import jieba


#pip install sklean


FLAGS = set('a an b f i j l n nr nrfg nrt ns nt nz s t v vi vn z eng'.split())

def cut(text):
    for sentence in split('[^a-zA-Z0-9\u4e00-\u9fa5]+', text.strip()):
        for w in dt.cut(sentence):
            if len(w.word) > 2 and w.flag in FLAGS:
                yield w.word

class TFIDF:
    def __init__(self, idf):
        self.idf = idf

    @classmethod
    def train(cls, texts):
        model = TfidfVectorizer(tokenizer=cut)
        model.fit(texts)
        idf = {w: model.idf_[i] for w, i in model.vocabulary_.items()}
        return cls(idf)

    def get_idf(self, word):
        return self.idf.get(word, max(self.idf.values()))

    def extract(self, text, top_n=10):
        counter = Counter()
        for w in cut(text):
            counter[w] += self.get_idf(w)
        #return [i[0:2] for i in counter.most_common(top_n)]
        return [i[0] for i in counter.most_common(top_n)]


if __name__ == '__main__':
    t0 = time()
    with open('./nlp-homework.txt', encoding='utf-8')as f:
        _texts = f.read().strip().split('\n')
        # print(_texts)
    tfidf = TFIDF.train(_texts)
    # print(_texts)
    for _text in _texts:
        seq_list=jieba.cut(_text,cut_all=True)  #全模式
        # seq_list=jieba.cut(_text,cut_all=False)  #精确模式
        # seq_list=jieba.cut_for_search(_text,)    #搜索引擎模式
        # print(list(seq_list))
        print(tfidf.extract(_text))
        with open('./resultciyun.txt','a+', encoding='utf-8') as g:
            for i in tfidf.extract(_text):
                g.write(str(i) + " ")
    print(time() - t0)

2. 生成词云:

代码如下:

  • 注意需要安装pip install wordcloud
  • 以及为了保证中文字体正常显示,需要下载SimSun.ttf字体,并且将这个字体包也放在和程序相同的目录下;
from wordcloud import WordCloud
filename = "resultciyun.txt"
with open(filename) as f:
 resultciyun = f.read()

wordcloud = WordCloud(font_path="simsun.ttf").generate(resultciyun)
# %pylab inline
import matplotlib.pyplot as plt
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()

3 最后词云的图片

总结

最后的最后
由本人水平所限,难免有错误以及不足之处, 屏幕前的靓仔靓女们 如有发现,恳请指出!

到此这篇关于Python 使用tf-idf算法计算文档关键字权重,并生成词云的文章就介绍到这了,更多相关Python tf-idf算法关键字权重并生成词云内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python线程之多线程展示详解

    Python线程之多线程展示详解

    这篇文章主要为大家介绍了Python线程之多线程展示,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • 通过python实现弹窗广告拦截过程详解

    通过python实现弹窗广告拦截过程详解

    这篇文章主要介绍了通过python实现弹窗广告拦截过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • keras CNN卷积核可视化,热度图教程

    keras CNN卷积核可视化,热度图教程

    这篇文章主要介绍了keras CNN卷积核可视化,热度图教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 如何在Django项目中引入静态文件

    如何在Django项目中引入静态文件

    这篇文章主要介绍了如何在Django项目中引入静态文件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • python的图形用户界面介绍

    python的图形用户界面介绍

    大家好,本篇文章主要讲的是python的图形用户界面介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2022-01-01
  • TensorFlow实现创建分类器

    TensorFlow实现创建分类器

    这篇文章主要为大家详细介绍了TensorFlow实现创建分类器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • Python3 Post登录并且保存cookie登录其他页面的方法

    Python3 Post登录并且保存cookie登录其他页面的方法

    今天小编就为大家分享一篇Python3 Post登录并且保存cookie登录其他页面的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python中re模块:匹配开头/结尾(^/$)

    Python中re模块:匹配开头/结尾(^/$)

    本文主要介绍了Python中re模块:匹配开头/结尾(^/$),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • 将pip源更换到国内镜像的详细步骤

    将pip源更换到国内镜像的详细步骤

    这篇文章主要介绍了将pip源更换到国内镜像的详细步骤,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-04-04
  • Python实现学生成绩管理系统

    Python实现学生成绩管理系统

    这篇文章主要为大家详细介绍了Python实现学生成绩管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01

最新评论