在RedHat系Linux上部署Python的Celery框架的教程

 更新时间:2015年04月07日 10:14:43   投稿:goldensun  
这篇文章主要介绍了在RedHat系Linux上部署Python的Celery框架的教程, Celery是一个并行分布框架,拥有良好的I/O性能,需要的朋友可以参考下

 Celery (芹菜)是基于Python开发的分布式任务队列。它支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度。
架构设计

201547101143510.png (758×496)

 Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。

1. 消息中间件

    Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis, MongoDB (experimental), Amazon SQS (experimental),CouchDB (experimental), SQLAlchemy (experimental),Django ORM (experimental), IronMQ

2.任务执行单元

    Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

3.任务结果存储

    Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, Redis,memcached, MongoDB,SQLAlchemy, Django ORM,Apache Cassandra, IronCache

另外, Celery还支持不同的并发和序列化的手段

1.并发

    Prefork, Eventlet, gevent, threads/single threaded

2.序列化

    pickle, json, yaml, msgpack. zlib, bzip2 compression, Cryptographic message signing 等等

安装和运行

Celery的安装过程略为复杂,下面的安装过程是基于我的AWS EC2的Linux版本的安装过程,不同的系统安装过程可能会有差异。大家可以参考官方文档。

首先我选择RabbitMQ作为消息中间件,所以要先安装RabbitMQ。作为安装准备,先更新YUM。
 

sudo yum -y update

RabbitMQ是基于erlang的,所以先安装erlang
 
# Add and enable relevant application repositories:
# Note: We are also enabling third party remi package repositories.
wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
wget http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
sudo rpm -Uvh remi-release-6*.rpm epel-release-6*.rpm
 
# Finally, download and install Erlang:
yum install -y erlang

然后安装RabbitMQ
 

# Download the latest RabbitMQ package using wget:
wget 
# Add the necessary keys for verification:
rpm --import 
# Install the .RPM package using YUM:
yum install rabbitmq-server-3.2.2-1.noarch.rpm

启动RabbitMQ服务
 

rabbitmq-server start
RabbitMQ服务已经准备好了,然后安装Celery, 假定你使用pip来管理你的python安装包
pip install Celery

 

为了测试Celery是否工作,我们运行一个最简单的任务,编写tasks.py
 
from celery import Celery
 
app = Celery('tasks', backend='amqp', broker='amqp://guest@localhost//')
app.conf.CELERY_RESULT_BACKEND = 'db+sqlite:///results.sqlite'
 
@app.task
def add(x, y):
 return x + y

在当前目录运行一个worker,用来执行这个加法的task
 

celery -A tasks worker --loglevel=info

其中-A参数表示的是Celery App的名字。注意这里我使用的是SQLAlchemy作为结果存储。对应的python包要事先安装好。

worker日志中我们会看到这样的信息
 

- ** ---------- [config]
- ** ---------- .> app:   tasks:0x1e68d50
- ** ---------- .> transport: amqp://guest:**@localhost:5672//
- ** ---------- .> results:  db+sqlite:///results.sqlite
- *** --- * --- .> concurrency: 8 (prefork)

其中,我们可以看到worker缺省使用prefork来执行并发,并设置并发数为8

下面的任务执行的客户端代码:
 

from tasks import add
import time
result = add.delay(4,4)
 
while not result.ready():
 print "not ready yet"
 time.sleep(5)
 
print result.get()

用python执行这段客户端代码,在客户端,结果如下
 

not ready 
8

Work日志显示
 

[2015-03-12 02:54:07,973: INFO/MainProcess] Received task: tasks.add[34c4210f-1bc5-420f-a421-1500361b914f]
[2015-03-12 02:54:08,006: INFO/MainProcess] Task tasks.add[34c4210f-1bc5-420f-a421-1500361b914f] succeeded in 0.0309705100954s: 8

这里我们可以发现,每一个task有一个唯一的ID,task异步执行在worker上。

这里要注意的是,如果你运行官方文档中的例子,你是无法在客户端得到结果的,这也是我为什么要使用SQLAlchemy来存储任务执行结果的原因。官方的例子使用AMPQ,有可能Worker在打印日志的时候取出了task的运行结果显示在worker日志中,然而AMPQ作为一个消息队列,当消息被取走后,队列中就没有了,于是客户端总是无法得到任务的执行结果。不知道为什么官方文档对这样的错误视而不见。

如果大家想要对Celery做更进一步的了解,请参考官方文档

相关文章

  • 解决Django提交表单报错:CSRF token missing or incorrect的问题

    解决Django提交表单报错:CSRF token missing or incorrect的问题

    这篇文章主要介绍了解决Django提交表单报错:CSRF token missing or incorrect的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python区块链简易版交易实现示例

    python区块链简易版交易实现示例

    这篇文章主要为大家介绍了python区块链简易版交易实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Python爬虫定时计划任务的几种常见方法(推荐)

    Python爬虫定时计划任务的几种常见方法(推荐)

    这篇文章主要介绍了Python爬虫定时计划任务的几种常见方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-01-01
  • Python中OpenCV实现查找轮廓的实例

    Python中OpenCV实现查找轮廓的实例

    本文将结合实例代码,介绍 OpenCV 如何查找轮廓、获取边界框。具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-06-06
  • Python logging日志模块的概念与实践讲解

    Python logging日志模块的概念与实践讲解

    本文通过具体的代码示例为大家解释了如何高效地使用logging模块进行日志记录,以及如何避免常见的陷阱,希望可以帮助大家更好地掌握这个强大的工具
    2023-07-07
  • Python 实现Image和Ndarray互相转换

    Python 实现Image和Ndarray互相转换

    今天小编就为大家分享一篇Python 实现Image和Ndarray互相转换,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python自动化办公之生成PDF报告详解

    Python自动化办公之生成PDF报告详解

    因为工作需要经常需要生成很多的PDF报告给客户查看产品效果以及过程的讲解,每次都需要按照一定的格式的编写文档并生成PDF报告,这样重复性的工作实在太累。本文就来用Python实现自动生成PDF报告吧
    2023-03-03
  • Python pymysql操作MySQL详细

    Python pymysql操作MySQL详细

    pymysql是Python3.x中操作MySQL数据库的模块,其兼容于MySQLdb,使用方法也与MySQLdb几乎相同,但是性能不如MySQLdb,但是由于其安装使用方便、对中文兼容性也更好等优点,被广泛使用。可以使用pip install pymysql进行安装。
    2021-09-09
  • 用sqlalchemy构建Django连接池的实例

    用sqlalchemy构建Django连接池的实例

    今天小编就为大家分享一篇用sqlalchemy构建Django连接池的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python+Delorean实现时间格式智能转换

    Python+Delorean实现时间格式智能转换

    DeLorean是一个Python的第三方模块,基于 pytz 和 dateutil 开发,用于处理Python中日期时间的格式转换。本文将详细讲讲DeLorean的使用,感兴趣的可以了解一下
    2022-04-04

最新评论