在Python中调用ggplot的三种方法

 更新时间:2015年04月08日 15:14:13   投稿:goldensun  
这篇文章主要介绍了在Python中调用ggplot的三种方法,ggplot作为一个图形库,经常被用来制作数据的可视化视图,需要的朋友可以参考下

本文提供了三种不同的方式在Python(IPython Notebook)中调用ggplot。

在大数据时代,数据可视化是一个非常热门的话题。各个BI的厂商无不在数据可视化领域里投入大量的精力。Tableau凭借其强大的数据可视化的功能成为硅谷炙手可热的上市公司。Tableau的数据可视化的产品,其理论基础其实是《The Grammar of Graphic》,该书提出了对信息可视化的图表的语法抽象体系,数据的探索和分析可以由图像的语法来驱动,而非有固定的图表类型来驱动,使得数据的探索过程变得友好而有趣。

然而对于The Grammar of Graphic的理论的实践,并非Tableau独占,ggplot作为R语言上得一个图形库,其理论基础也是这本书。(注,笔者曾就职的某BI巨头,主要职责也是数据可视化,我们曾经和加拿大团队研发过类似的产品,基于HTML5和D3,可惜由于种种原因未能推向市场)

现在越来越多的人开始使用python来做数据分析,IPython Notebook尤其令人喜爱,它的实时交互把脚本语言的优势发挥到极致。那么怎样才能在IPython Notebook中使用ggplot呢?我这里跟大家分享三种不同的方式供大家选择。
RPy2

第一种方式是使用rpy2, rpy2是对rpy的改写和重新设计,旨在提供Python用户在python中使用R的API。

rpy2提供了对R语言的对象和方法的基本封装,当然也包括可视化的图库这一块。

下面就是一段运行ggplot的R程序使用rpy2在python中运行的例子:
 

from rpy2 import robjects
from rpy2.robjects import Formula, Environment
from rpy2.robjects.vectors import IntVector, FloatVector
from rpy2.robjects.lib import grid
from rpy2.robjects.packages import importr, data
import rpy2.robjects.lib.ggplot2 as ggplot2
 
# The R 'print' function
rprint = robjects.globalenv.get("print")
stats = importr('stats')
grdevices = importr('grDevices')
base = importr('base')
datasets = importr('datasets')
 
mtcars = data(datasets).fetch('mtcars')['mtcars']
 
pp = ggplot2.ggplot(mtcars) + \
   ggplot2.aes_string(x='wt', y='mpg', col='factor(cyl)') + \
   ggplot2.geom_point() + \
   ggplot2.geom_smooth(ggplot2.aes_string(group = 'cyl'),
             method = 'lm')
pp.plot()

以上程序在IPython Notebook中运行会有缺陷,会弹出一个新的窗口显示图,而且该python进程会阻塞在那里。我们希望图表能内嵌在IPython Notebook的页面中,为了解决该问题,我们引入如下代码:
 

%matplotlib inline
 
import uuid
from rpy2.robjects.packages import importr 
from IPython.core.display import Image
 
grdevices = importr('grDevices')
def ggplot_notebook(gg, width = 800, height = 600):
  fn = '{uuid}.png'.format(uuid = uuid.uuid4())
  grdevices.png(fn, width = width, height = height)
  gg.plot()
  grdevices.dev_off()
  return Image(filename=fn)

运行上述代码后,我们把ggplot的调用pp.plot()改为调用ggplot_notebook(pp, height=300)就能成功嵌入显示ggplot的结果。

201548145241359.png (800×300)

RMagic

另一种方式是使用rmagic,rmagicy实际上依赖于rpy2。它的使用方式更像是直接在使用R
 

%load_ext rmagic
library(ggplot2)
dat <- data.frame(x = rnorm(10), y = rnorm(10), 
         lab = sample(c('A', 'B'), 10, replace = TRUE))
x <- ggplot(dat, aes(x = x, y = y, color = lab)) + geom_point()
print(x)

运行结果如下

201548145327917.png (480×480)

ggplot for python

ggplot是一个python的库,基本上是对R语言ggplot的功能移植到Python上。

运行安装脚本

pip install ggplot

安装成功后,可以试一下这个例子
 

%matplotlib inline
import pandas as pd
from ggplot import *
meat_lng = pd.melt(meat[['date', 'beef', 'pork', 'broilers']], id_vars='date')
ggplot(aes(x='date', y='value', colour='variable'), data=meat_lng) + \
  geom_point() + \
  stat_smooth(color='red')

结果如下:

201548145402721.png (649×499)

总结

本文提供了三种不同的方式在Python(IPython Notebook)中调用ggplot。

rpy2和Rmagic都是一种对R的桥接,所以都需要安装R。不同之处在于rpy2提供Python接口而Rmagic更接近R。

ggplot Python库是ggplot的Python移植,所以无需安装R,部署起来更为简单,但功能上也许和R的ggplot还有差距。

大家可以根据自己的需要做出选择。

您可能感兴趣的文章:

相关文章

  • Python中 Lambda表达式全面解析

    Python中 Lambda表达式全面解析

    Lambda是一种匿名函数,当我们需要重复调用某一函数,又不想写那么多代码时可以使用lambda表达式来代替。本文给大家介绍Python中 Lambda表达式,需要的朋友一起学习吧
    2016-11-11
  • Python使用自定义装饰器的示例详解

    Python使用自定义装饰器的示例详解

    在Python自动化测试中,可以使用自定义的装饰器来给测试方法传递测试数据。本文将通过简单的示例和大家介绍下具体的使用方法,希望对大家有所帮助
    2022-11-11
  • 将pip源更换到国内镜像的详细步骤

    将pip源更换到国内镜像的详细步骤

    这篇文章主要介绍了将pip源更换到国内镜像的详细步骤,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-04-04
  • Python环境下搭建属于自己的pip源的教程

    Python环境下搭建属于自己的pip源的教程

    这篇文章主要介绍了Python环境下搭建属于自己的pip源的教程,同时也附带讲解了修改pip源设定的方法,需要的朋友可以参考下
    2016-05-05
  • python最短路径的求解Dijkstra算法示例代码

    python最短路径的求解Dijkstra算法示例代码

    这篇文章主要给大家介绍了关于python最短路径的求解Dijkstra算法的相关资料,并使用Python的heapq模块实现该算法,通过示例展示了如何从节点0到节点8求解最短路径,需要的朋友可以参考下
    2024-11-11
  • Python+Kivy编写一个乒乓球游戏

    Python+Kivy编写一个乒乓球游戏

    Kivy 是用 Python 和 Cython 编写的,基于 OpenGL ES 2,支持各种输入设备并拥有丰富的部件库。本文将教你如何使用 Kivy 编写一款乒乓球游戏,感兴趣的可以动手试一试
    2022-05-05
  • python制作朋友圈九宫格图片

    python制作朋友圈九宫格图片

    这篇文章主要为大家详细介绍了python制作朋友圈九宫格图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-11-11
  • pandas创建DataFrame的方式小结

    pandas创建DataFrame的方式小结

    今天给大家整理了pandas创建DataFrame的方式小结,现在我们就来看看这三种生成Dataframe的方式,每种方式通过实例代码给大家介绍的非常详细,需要的朋友参考下吧
    2021-09-09
  • Python生成器的使用方法和示例代码

    Python生成器的使用方法和示例代码

    今天小编就为大家分享一篇关于Python生成器的使用方法和示例代码,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-03-03
  • Flask之flask-script模块使用

    Flask之flask-script模块使用

    Flask Script扩展提供向Flask插入外部脚本的功能,这篇文章主要介绍了Flask之flask-script模块使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-07-07

最新评论