C语言实现基于最大堆和最小堆的堆排序算法示例

 更新时间:2016年06月08日 11:04:29   作者:黄仪标  
这篇文章主要介绍了C语言实现基于最大堆和最小堆的堆排序算法示例,分别是基于最大堆的升序排序和基于最小堆的降序排序实例,需要的朋友可以参考下

堆定义
堆实际上是一棵完全二叉树,其任何一非叶节点满足性质:
Key[i]<=key[2i+1]&&Key[i]<=key[2i+2](小顶堆)或者:Key[i]>=Key[2i+1]&&key>=key[2i+2](大顶堆)
即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。

堆排序的思想
利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。

  • 最大堆:所有节点的子节点比其自身小的堆。
  • 最小堆:所有节点的子节点比其自身大的堆。

这里以最大堆为基础,其基本思想为:

1.将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;
2.将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n];
3.由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

C语言实现
1.基于最大堆实现升序排序

// 初始化堆
void initHeap(int a[], int len) {
 // 从完全二叉树最后一个非子节点开始
 // 在数组中第一个元素的索引是0
 // 第n个元素的左孩子为2n+1,右孩子为2n+2,
 // 最后一个非子节点位置在(n - 1) / 2
 for (int i = (len - 1) / 2; i >= 0; --i) {
  adjustMaxHeap(a, len, i);
 }
}
 
void adjustMaxHeap(int a[], int len, int parentNodeIndex) {
 // 若只有一个元素,那么只能是堆顶元素,也没有必要再排序了
 if (len <= 1) {
  return;
 }
 
 // 记录比父节点大的左孩子或者右孩子的索引
 int targetIndex = -1;
 
 // 获取左、右孩子的索引
 int leftChildIndex = 2 * parentNodeIndex + 1;
 int rightChildIndex = 2 * parentNodeIndex + 2;
 
 // 没有左孩子
 if (leftChildIndex >= len) {
  return;
 }
 
 // 有左孩子,但是没有右孩子
 if (rightChildIndex >= len) {
  targetIndex = leftChildIndex;
 }
 // 有左孩子和右孩子
 else {
  // 取左、右孩子两者中最大的一个
  targetIndex = a[leftChildIndex] > a[rightChildIndex] ? leftChildIndex : rightChildIndex;
 }
 
 // 只有孩子比父节点的值还要大,才需要交换
 if (a[targetIndex] > a[parentNodeIndex]) {
  int temp = a[targetIndex];
  
  a[targetIndex] = a[parentNodeIndex];
  a[parentNodeIndex] = temp;
  
  
  // 交换完成后,有可能会导致a[targetIndex]结点所形成的子树不满足堆的条件,
  // 若不满足堆的条件,则调整之使之也成为堆
  adjustMaxHeap(a, len, targetIndex);
 }
}
 
void heapSort(int a[], int len) {
 if (len <= 1) {
  return;
 }
 
 // 初始堆成无序最大堆
 initHeap(a, len);
 
 for (int i = len - 1; i > 0; --i) {
  // 将当前堆顶元素与最后一个元素交换,保证这一趟所查找到的堆顶元素与最后一个元素交换
  // 注意:这里所说的最后不是a[len - 1],而是每一趟的范围中最后一个元素
  // 为什么要加上>0判断?每次不是说堆顶一定是最大值吗?没错,每一趟调整后,堆顶是最大值的
  // 但是,由于len的范围不断地缩小,导致某些特殊的序列出现异常
  // 比如说,5, 3, 8, 6, 4序列,当调整i=1时,已经调整为3,4,5,6,8序列,已经有序了
  // 但是导致了a[i]与a[0]交换,由于变成了4,3,5,6,8反而变成无序了!
  if (a[0] > a[i]) {
   int temp = a[0];
   a[0] = a[i];
   a[i] = temp;
  }
  
  // 范围变成为:
  // 0...len-1
  // 0...len-1-1
  // 0...1 // 结束
  // 其中,0是堆顶,每次都是找出在指定的范围内比堆顶还大的元素,然后与堆顶元素交换
  adjustMaxHeap(a, i - 1, 0);
 }
}

2.基于最小堆实现降序排序

// 初始化堆
void initHeap(int a[], int len) {
 // 从完全二叉树最后一个非子节点开始
 // 在数组中第一个元素的索引是0
 // 第n个元素的左孩子为2n+1,右孩子为2n+2,
 // 最后一个非子节点位置在(n - 1) / 2
 for (int i = (len - 1) / 2; i >= 0; --i) {
  adjustMinHeap(a, len, i);
 }
}
 
void adjustMinHeap(int a[], int len, int parentNodeIndex) {
 // 若只有一个元素,那么只能是堆顶元素,也没有必要再排序了
 if (len <= 1) {
  return;
 }
 
 // 记录比父节点大的左孩子或者右孩子的索引
 int targetIndex = -1;
 
 // 获取左、右孩子的索引
 int leftChildIndex = 2 * parentNodeIndex + 1;
 int rightChildIndex = 2 * parentNodeIndex + 2;
 
 // 没有左孩子
 if (leftChildIndex >= len) {
  return;
 }
 
 // 有左孩子,但是没有右孩子
 if (rightChildIndex >= len) {
  targetIndex = leftChildIndex;
 }
 // 有左孩子和右孩子
 else {
  // 取左、右孩子两者中最上的一个
  targetIndex = a[leftChildIndex] < a[rightChildIndex] ? leftChildIndex : rightChildIndex;
 }
 
 // 只有孩子比父节点的值还要小,才需要交换
 if (a[targetIndex] < a[parentNodeIndex]) {
  int temp = a[targetIndex];
  
  a[targetIndex] = a[parentNodeIndex];
  a[parentNodeIndex] = temp;
  
  
  // 交换完成后,有可能会导致a[targetIndex]结点所形成的子树不满足堆的条件,
  // 若不满足堆的条件,则调整之使之也成为堆
  adjustMinHeap(a, len, targetIndex);
 }
}
 
void heapSort(int a[], int len) {
 if (len <= 1) {
  return;
 }
 
 // 初始堆成无序最小堆
 initHeap(a, len);
 
 for (int i = len - 1; i > 0; --i) {
  // 将当前堆顶元素与最后一个元素交换,保证这一趟所查找到的堆顶元素与最后一个元素交换
  // 注意:这里所说的最后不是a[len - 1],而是每一趟的范围中最后一个元素
  // 为什么要加上>0判断?每次不是说堆顶一定是最小值吗?没错,每一趟调整后,堆顶是最小值的
  // 但是,由于len的范围不断地缩小,导致某些特殊的序列出现异常
  // 比如说,5, 3, 8, 6, 4序列,当调整i=1时,已经调整为3,4,5,6,8序列,已经有序了
  // 但是导致了a[i]与a[0]交换,由于变成了4,3,5,6,8反而变成无序了!
  if (a[0] < a[i]) {
   int temp = a[0];
   a[0] = a[i];
   a[i] = temp;
  }
  
  // 范围变成为:
  // 0...len-1
  // 0...len-1-1
  // 0...1 // 结束
  // 其中,0是堆顶,每次都是找出在指定的范围内比堆顶还小的元素,然后与堆顶元素交换
  adjustMinHeap(a, i - 1, 0);
 }
}

3.C语言版测试

大家可以测试一下:

// int a[] = {5, 3, 8, 6, 4};
int a[] = {89,-7,999,-89,7,0,-888,7,-7};
heapSort(a, sizeof(a) / sizeof(int));
 
for (int i = 0; i < sizeof(a) / sizeof(int); ++i) {
  NSLog(@"%d", a[i]);
}

相关文章

  • C++中函数的用法小结

    C++中函数的用法小结

    这篇文章主要为大家分享下本人在阅读《C++ Primer》函数一章时的读书总结,需要的朋友可以参考下
    2014-02-02
  • C++中的函数返回值问题

    C++中的函数返回值问题

    这篇文章主要介绍了C++中的函数返回值问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-09-09
  • C语言解决字符串中插入和删除某段字符串问题

    C语言解决字符串中插入和删除某段字符串问题

    这篇文章主要介绍了C语言解决字符串中插入和删除某段字符串问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • C语言实现排雷游戏(多文件)

    C语言实现排雷游戏(多文件)

    这篇文章主要为大家详细介绍了C语言实现排雷游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-07-07
  • C++读写配置项的基本操作

    C++读写配置项的基本操作

    这篇文章主要介绍了C++读写配置项的基本操作,帮助大家更好的理解和学习c++,感兴趣的朋友可以了解下
    2021-01-01
  • 详解C++中String类模拟实现以及深拷贝浅拷贝

    详解C++中String类模拟实现以及深拷贝浅拷贝

    这篇文章主要介绍了详解C++中String类模拟实现以及深拷贝浅拷贝的相关资料,希望通过本文能帮助到大家,让大家实现这样的方法,需要的朋友可以参考下
    2017-10-10
  • Vs2022环境下安装低版本.net framework的实现步骤

    Vs2022环境下安装低版本.net framework的实现步骤

    本文主要介绍了Vs2022环境下安装低版本.net framework的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-04-04
  • 用while判断输入的数字是否回文数的简单实现

    用while判断输入的数字是否回文数的简单实现

    这篇文章主要介绍了用while判断输入的数字是否回文数的简单实现,需要的朋友可以参考下
    2014-02-02
  • Objective-C的内省(Introspection)用法小结

    Objective-C的内省(Introspection)用法小结

    这篇文章主要介绍了Objective-C的内省(Introspection)用法,这是面向对象语言和环境的一个强大特性,需要的朋友可以参考下
    2014-07-07
  • C语言字符串函数介绍与模拟实现详解

    C语言字符串函数介绍与模拟实现详解

    字符串函数(String processing function)也叫字符串处理函数,指的是编程语言中用来进行字符串处理的函数,如C,pascal,Visual以及LotusScript中进行字符串拷贝,计算长度,字符查找等的函数
    2022-02-02

最新评论