HyperLRP中文车牌识别框架 v1.0

HyperLRP

  • 源码大小:102MB
  • 源码语言:简体中文
  • 源码类型:国产软件
  • 源码授权:开源软件
  • 更新时间:2020-10-21 17:16:57
  • 源码类别:其它源码
  • 源码官网:
  • 网友评分:源码评分
  • 应用平台:C++
102MB
360通过 腾讯通过 金山通过
内容介绍热点排行相关文章下载地址↓

 HyperLRP是一个开源的、基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP、C/C++、Python语言,Windows/Mac/Linux/Android/IOS 平台。

特性:

速度快 720p,单核 Intel 2.2G CPU (MaBook Pro 2015)平均识别时间低于100ms

基于端到端的车牌识别无需进行字符分割

识别率高,卡口场景准确率在95%-97%左右

轻量,总代码量不超1k行

Python 依赖:

Keras (>2.0.0)

Theano(>0.9) or Tensorflow(>1.1.x)

Numpy (>1.10)

Scipy (0.19.1)

OpenCV(>3.0)

Scikit-image (0.13.0)

PIL

CPP 依赖:

Opencv 3.4 以上版本

模型资源说明:

cascade.xml 检测模型 - 目前效果最好的cascade检测模型

cascade_lbp.xml 召回率效果较好,但其错检太多

char_chi_sim.h5 Keras模型-可识别34类数字和大写英文字 使用14W样本训练

char_rec.h5 Keras模型-可识别34类数字和大写英文字 使用7W样本训练

ocr_plate_all_w_rnn_2.h5 基于CNN的序列模型

ocr_plate_all_gru.h5 基于GRU的序列模型从OCR模型修改,效果目前最好但速度较慢,需要20ms。

plate_type.h5 用于车牌颜色判断的模型

model12.h5 左右边界回归模型

注意事项:

Win工程中若需要使用静态库,需单独编译

本项目的C++实现和Python实现无任何关联,都为单独实现

在编译C++工程的时候必须要使用OpenCV 3.3以上版本 (DNN 库),否则无法编译

安卓工程编译ndk尽量采用14b版本

人气源码
下载地址
相关文章
网友评论
下载声明

☉ 解压密码:www.jb51.net 就是本站主域名,希望大家看清楚,[ 分享码的获取方法 ]可以参考这篇文章
☉ 推荐使用 [ 迅雷 ] 下载,使用 [ WinRAR v5 ] 以上版本解压本站软件。
☉ 如果这个软件总是不能下载的请在评论中留言,我们会尽快修复,谢谢!
☉ 下载本站资源,如果服务器暂不能下载请过一段时间重试!或者多试试几个下载地址
☉ 如果遇到什么问题,请评论留言,我们定会解决问题,谢谢大家支持!
☉ 本站提供的一些商业软件是供学习研究之用,如用于商业用途,请购买正版。
☉ 本站提供的HyperLRP中文车牌识别框架 v1.0资源来源互联网,版权归该下载资源的合法拥有者所有。