pytorch的backward()的底层实现逻辑详解

 更新时间:2023年11月20日 11:34:16   作者:子燕若水  
自动微分是一种计算张量(tensors)的梯度(gradients)的技术,它在深度学习中非常有用,这篇文章主要介绍了pytorch的backward()的底层实现逻辑,需要的朋友可以参考下

自动微分是一种计算张量(tensors)的梯度(gradients)的技术,它在深度学习中非常有用。自动微分的基本思想是:

  • 自动微分会记录数据(张量)和所有执行的操作(以及产生的新张量)在一个由函数(Function)对象组成的有向无环图(DAG)中。在这个图中,叶子节点是输入张量,根节点是输出张量。通过从根节点到叶子节点追踪这个图,可以使用链式法则(chain rule)自动地计算梯度。
  • 在前向传播(forward pass)中,自动微分同时做两件事:
    • 运行请求的操作来计算一个结果张量,以及
    • 在 DAG 中保留操作的梯度函数。
    • 在 DAG 中保留操作的梯度函数,这就是说,当你给自动微分一个张量和一个操作,它不仅会计算出结果张量,还会记住这个操作的梯度函数,也就是这个操作对输入张量的导数。例如,如果你给自动微分一个张量 x = [1, 2, 3] 和一个操作 y = x + 1,它不仅会计算出 y = [2, 3, 4],还会记住这个操作的梯度函数是 dy/dx = 1,也就是说,y 对 x 的导数是 1。这样,当你需要计算梯度时,自动微分就可以根据这个梯度函数来计算出结果张量对输入张量的梯度。
  • 在PyTorch中,DAG是动态的。需要注意的一点是,图是从头开始重新创建的;在每个 .backward() 调用之后,autograd开始填充一个新的图。
  • 后向传播开始于当在 DAG 的根节点上调用 .backward() 方法。这个方法会触发自动微分开始计算梯度。
  • 自动微分会从每个 .grad_fn 中计算梯度,这个 .grad_fn 是一个函数对象,它保存了操作的梯度函数。例如,如果一个操作是 y = x + 1,那么它的 .grad_fn 就是 dy/dx = 1。
  • 自动微分会将计算出的梯度累加到相应张量的 .grad 属性中,这个 .grad 属性是一个张量,它保存了结果张量对输入张量的梯度。例如,如果一个结果张量是 y = [2, 3, 4],那么它的 .grad 属性就是 [1, 1, 1],表示 y 对 x 的梯度是 1。
  • 使用链式法则(chain rule),自动微分会一直向后传播,直到到达叶子张量。链式法则是一种数学公式,它可以将复合函数的梯度分解为简单函数的梯度的乘积。例如,如果一个复合函数是 z = f(g(x)),那么它的梯度是 dz/dx = dz/dg * dg/dx。
 
import torch
import torch.nn as nn
M = nn.Linear(2, 2) # neural network module
M.eval() # set M to evaluation mode
with torch.no_grad(): # disable gradient computation
    for param in M.parameters(): # loop over all parameters
        param.fill_(1) # fill the parameter with 1
M.requires_grad_(False)
a = torch.tensor([1., 2.], requires_grad=True) # leaf node
b = torch.tensor([13., 32.], requires_grad=True) # leaf node
c = M(a) # non-leaf node
c2 = M(b) # non-leaf node
d = c * 2  # non-leaf node
d.sum().backward() # compute gradients
print(a.grad)
print(b.grad)
print(c.grad)
print(d.grad)
print(M.weight.grad) # None

构建计算图:当我们调用backward()方法时,PyTorch会自动构建从叶子节点a到损失值d.sum()的计算图,这是一个有向无环图,表示了各个张量之间的运算关系。计算图中还包含了两个中间变量c和d,它们是由a经过M模型的前向传播得到的。计算图的作用是记录反向传播的路径,以便于计算梯度。 计算梯度:在计算图中,每个张量都有一个属性grad,用于存储它的梯度值。当我们调用backward()方法时,PyTorch会沿着计算图按照链式法则计算并填充每个张量的grad属性。由于我们只对叶子节点a的梯度感兴趣,所以只有a的grad属性会被计算出来,而中间变量c和d的grad属性会被忽略。a的grad属性的值是损失值d.sum()对a的偏导数,表示了a的变化对损失值的影响。 

到此这篇关于pytorch的backward()的底层实现逻辑的文章就介绍到这了,更多相关pytorch backward()内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • numpy.insert()的具体使用方法

    numpy.insert()的具体使用方法

    本文主要介绍了numpy.insert()的具体使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • 使用python如何提取JSON数据指定内容

    使用python如何提取JSON数据指定内容

    这篇文章主要介绍了使用python如何提取JSON数据指定内容,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • 关于Python文本生成的Beam Search解码问题

    关于Python文本生成的Beam Search解码问题

    这篇文章主要介绍了Python文本生成的Beam Search解码,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • python实现扫雷小游戏

    python实现扫雷小游戏

    这篇文章主要为大家详细介绍了python实现扫雷小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-04-04
  • Python+Selenium+phantomjs实现网页模拟登录和截图功能(windows环境)

    Python+Selenium+phantomjs实现网页模拟登录和截图功能(windows环境)

    Python是一种跨平台的计算机程序设计语言,它可以运行在Windows、Mac和各种Linux/Unix系统上。这篇文章主要介绍了Python+Selenium+phantomjs实现网页模拟登录和截图功能,需要的朋友可以参考下
    2019-12-12
  • Python中json.loads和json.dumps方法中英双语详解

    Python中json.loads和json.dumps方法中英双语详解

    在Python中json.loads和json.dumps是处理JSON数据的重要方法,json.loads用于将JSON字符串解析为Python对象,而json.dumps用于将Python对象序列化为JSON字符串,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2025-01-01
  • 解决python的空格和tab混淆而报错的问题

    解决python的空格和tab混淆而报错的问题

    这篇文章主要介绍了解决python的空格和tab混淆而报错的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-02-02
  • python:关于文件加载及处理方式

    python:关于文件加载及处理方式

    这篇文章主要介绍了python:关于文件加载及处理方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-09-09
  • Python OpenCV 调用摄像头并截图保存功能的实现代码

    Python OpenCV 调用摄像头并截图保存功能的实现代码

    这篇文章主要介绍了Python OpenCV 调用摄像头并截图保存功能,本文通过两段实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-07-07
  • Python获取网页数据详解流程

    Python获取网页数据详解流程

    读万卷书不如行万里路,只学书上的理论是远远不够的,只有在实战中才能获得能力的提升,本篇文章手把手带你用Python来获取网页的数据,主要应用了Requests库,大家可以在过程中查缺补漏,提升水平
    2021-10-10

最新评论