用Pytorch实现线性回归模型的步骤

 更新时间:2024年01月16日 11:19:18   作者:chairon  
线性关系是一种非常简单的变量之间的关系,因变量和自变量在线性关系的情况下,可以使用线性回归算法对一个或多个因变量和自变量间的线性关系进行建模,本文主要介绍了如何利用Pytorch实现线性模型,需要的朋友可以参考下

Pytorch实现

步骤

  • 准备数据集
  • 设计模型(计算预测值y_hat):从nn.Module模块继承
  • 构造损失函数和优化器:使用PytorchAPI
  • 训练过程:Forward、Backward、update

1. 准备数据

在PyTorch中计算图是通过mini-batch形式进行,所以X、Y都是多维的Tensor。

在这里插入图片描述

import torch
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])

2. 设计模型

在之前讲解梯度下降算法时,我们需要自己计算出梯度,然后更新权重。

在这里插入图片描述

而使用Pytorch构造模型,重点时在构建计算图和损失函数上。

在这里插入图片描述

class LinearModel

通过构造一个 class LinearModel类来实现,所有的模型类都需要继承nn.Module,这是所有神经忘了模块的基础类。
class LinearModel这种定义的模型类必须包含两个部分:

  • init():构造函数,进行初始化。
    def __init__(self):
        super(LinearModel, self).__init__()#调用父类构造函数,不用管,照着写。
        # torch.nn.Linear(in_featuers, in_featuers)构造Linear类的对象,其实就是实现了一个线性单元
        self.linear = torch.nn.Linear(1, 1)

在这里插入图片描述

  • forward():进行前馈计算(backward没有被写,是因为在这种模型类里面会自动实现)

Class nn.Linear 实现了magic method call():它使类的实例可以像函数一样被调用。通常会调用forward()。

    def forward(self, x):
        y_pred = self.linear(x)#调用linear对象,输入x进行预测
        return y_pred

代码

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()#调用父类构造函数,不用管,照着写。
        # torch.nn.Linear(in_featuers, in_featuers)构造Linear类的对象,其实就是实现了一个线性单元
        self.linear = torch.nn.Linear(1, 1)
    def forward(self, x):
        y_pred = self.linear(x)#调用linear对象,输入x进行预测
        return y_pred

model = LinearModel()#实例化LinearModel()

3. 构造损失函数和优化器

采用MSE作为损失函数

torch.nn.MSELoss(size_average,reduce)

  • size_average:是否求mini-batch的平均loss。
  • reduce:降维,不用管。

在这里插入图片描述

SGD作为优化器torch.optim.SGD(params, lr):

  • params:参数
  • lr:学习率

在这里插入图片描述

criterion = torch.nn.MSELoss(size_average=False)#size_average:the losses are averaged over each loss element in the batch.
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)#params:model.parameters(): w、b

4. 训练过程

  • 预测
  • 计算loss
  • 梯度清零
  • Backward
  • 参数更新
    简化:Forward–>Backward–>更新
#4. Training Cycle
for epoch in range(100):
    y_pred = model(x_data)#Forward:预测
    loss = criterion(y_pred, y_data)#Forward:计算loss
    print(epoch, loss)
    optimizer.zero_grad()#梯度清零
    loss.backward()#backward:计算梯度
    optimizer.step()#通过step()函数进行参数更新

5. 输出和测试

# Output weight and bias
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

# Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)

完整代码

import torch
#1. Prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])

#2. Design Model
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()#调用父类构造函数,不用管,照着写。
        # torch.nn.Linear(in_featuers, in_featuers)构造Linear类的对象,其实就是实现了一个线性单元
        self.linear = torch.nn.Linear(1, 1)
    def forward(self, x):
        y_pred = self.linear(x)#调用linear对象,输入x进行预测
        return y_pred

model = LinearModel()#实例化LinearModel()

# 3. Construct Loss and Optimize
criterion = torch.nn.MSELoss(size_average=False)#size_average:the losses are averaged over each loss element in the batch.
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)#params:model.parameters(): w、b

#4. Training Cycle
for epoch in range(100):
    y_pred = model(x_data)#Forward:预测
    loss = criterion(y_pred, y_data)#Forward:计算loss
    print(epoch, loss)
    optimizer.zero_grad()#梯度清零
    loss.backward()#backward:计算梯度
    optimizer.step()#通过step()函数进行参数更新

# Output weight and bias
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

# Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)

输出结果:

85 tensor(0.2294, grad_fn=)
86 tensor(0.2261, grad_fn=)
87 tensor(0.2228, grad_fn=)
88 tensor(0.2196, grad_fn=)
89 tensor(0.2165, grad_fn=)
90 tensor(0.2134, grad_fn=)
91 tensor(0.2103, grad_fn=)
92 tensor(0.2073, grad_fn=)
93 tensor(0.2043, grad_fn=)
94 tensor(0.2014, grad_fn=)
95 tensor(0.1985, grad_fn=)
96 tensor(0.1956, grad_fn=)
97 tensor(0.1928, grad_fn=)
98 tensor(0.1900, grad_fn=)
99 tensor(0.1873, grad_fn=)
w = 1.711882472038269
b = 0.654958963394165
y_pred = tensor([[7.5025]])

可以看到误差还比较大,可以增加训练轮次,训练1000次后的结果:

980 tensor(2.1981e-07, grad_fn=)
981 tensor(2.1671e-07, grad_fn=)
982 tensor(2.1329e-07, grad_fn=)
983 tensor(2.1032e-07, grad_fn=)
984 tensor(2.0737e-07, grad_fn=)
985 tensor(2.0420e-07, grad_fn=)
986 tensor(2.0143e-07, grad_fn=)
987 tensor(1.9854e-07, grad_fn=)
988 tensor(1.9565e-07, grad_fn=)
989 tensor(1.9260e-07, grad_fn=)
990 tensor(1.8995e-07, grad_fn=)
991 tensor(1.8728e-07, grad_fn=)
992 tensor(1.8464e-07, grad_fn=)
993 tensor(1.8188e-07, grad_fn=)
994 tensor(1.7924e-07, grad_fn=)
995 tensor(1.7669e-07, grad_fn=)
996 tensor(1.7435e-07, grad_fn=)
997 tensor(1.7181e-07, grad_fn=)
998 tensor(1.6931e-07, grad_fn=)
999 tensor(1.6700e-07, grad_fn=)
w = 1.9997280836105347
b = 0.0006181497010402381
y_pred = tensor([[7.9995]])

练习

用以下这些优化器替换SGD,得到训练结果并画出损失曲线图。

在这里插入图片描述

比如说:Adam的loss图:

在这里插入图片描述

以上就是用Pytorch实现线性回归模型的步骤的详细内容,更多关于Pytorch线性回归模型的资料请关注脚本之家其它相关文章!

相关文章

  • Python多进程使用及进程池详解

    Python多进程使用及进程池详解

    这篇文章主要为大家介绍了Python多进程使用及进程池详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • Python编程中flask的简介与简单使用

    Python编程中flask的简介与简单使用

    今天小编就为大家分享一篇关于Python编程中flask的简介与简单使用,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-12-12
  • 利用Python编写一个简单的缓存系统

    利用Python编写一个简单的缓存系统

    今天来做一个最简单的例子,利用写一个最简单的缓存系统,以key``value的方式保持数据,并且需要将内容中的数据落地到文件,以便下次启动的时候,将文件的内容加载进内存中来,感兴趣的可以了解一下
    2023-04-04
  • opencv python 傅里叶变换的使用

    opencv python 傅里叶变换的使用

    这篇文章主要介绍了opencv python 傅里叶变换的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-07-07
  • python使用socket实现的传输demo示例【基于TCP协议】

    python使用socket实现的传输demo示例【基于TCP协议】

    这篇文章主要介绍了python使用socket实现的传输demo,结合实例形式分析了Python使用socket库基于TCP协议实现的客户端与服务器端相关操作技巧,需要的朋友可以参考下
    2019-09-09
  • Matplotlib学习笔记之plt.xticks()用法

    Matplotlib学习笔记之plt.xticks()用法

    在matplotlib中ticks表示的是刻度,而刻度有两层意思,一个是刻标(locs),一个是刻度标签(tick labels),下面这篇文章主要给大家介绍了关于Matplotlib学习笔记之plt.xticks()用法的相关资料,需要的朋友可以参考下
    2022-09-09
  • 微信跳一跳游戏python脚本

    微信跳一跳游戏python脚本

    这篇文章主要为大家详细介绍了微信跳一跳游戏python脚本,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • Pytorch关于Dataset 的数据处理

    Pytorch关于Dataset 的数据处理

    这篇文章主要介绍了Pytorch关于Dataset 的数据处理,学习如何对卷积神经网络编程;首先,需要了解Pytorch对数据的使用,也是在我们模型流程中对数据的预处理部分,下面我们就一起进入文章查看具体处理过程吧
    2021-12-12
  • 详解Python判定IP地址合法性的三种方法

    详解Python判定IP地址合法性的三种方法

    这篇文章主要介绍了详解Python判定IP地址合法性的三种方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-03-03
  • 给ubuntu18安装python3.7的详细教程

    给ubuntu18安装python3.7的详细教程

    这篇文章主要介绍了给ubuntu18安装python3.7的详细教程,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-06-06

最新评论