如何使用python的plot绘制loss、acc曲线并存储成图片

 更新时间:2024年03月14日 10:49:46   作者:githubcurry  
在数据可视化中曲线图是一种常见的展示数据趋势的方式,Python作为一种强大的编程语言,提供了丰富的数据处理和可视化库,使得绘制曲线图变得非常简单,下面这篇文章主要给大家介绍了关于如何使用python的plot绘制loss、acc曲线并存储成图片的相关资料,需要的朋友可以参考下

前言

使用 python的plot 绘制网络训练过程中的的 loss 曲线以及准确率变化曲线,这里的主要思想就时先把想要的损失值以及准确率值保存下来,保存到 .txt 文件中,待网络训练结束,我们再拿这存储的数据绘制各种曲线。

其大致步骤为:数据读取与存储 - > loss曲线绘制 - > 准确率曲线绘制

一、数据读取与存储部分

我们首先要得到训练时的数据,以损失值为例,网络每迭代一次都会产生相应的 loss,那么我们就把每一次的损失值都存储下来,存储到列表,保存到 .txt 文件中。

1.3817585706710815, 
1.8422836065292358, 
1.1619832515716553, 
0.5217241644859314, 
0.5221078991889954, 
1.3544578552246094, 
1.3334463834762573, 
1.3866571187973022, 
0.7603049278259277

上图为部分损失值,根据迭代次数而异,要是迭代了1万次,这里就会有1万个损失值。
而准确率值是每一个 epoch 产生一个值,要是训练100个epoch,就有100个准确率值。

这里的损失值是怎么保存到文件中的呢?首先,找到网络训练代码,就是项目中的 main.py,或者 train.py ,在文件里先找到训练部分,里面经常会有这样一行代码:

for epoch in range(resume_epoch, num_epochs):   # 就是这一行
	####
	...
	loss = criterion(outputs, labels.long())              # 损失样例
	...
    epoch_acc = running_corrects.double() / trainval_sizes[phase]    # 准确率样例
    ...
    ###

从这一行开始就是训练部分了,往下会找到类似的这两句代码,就是损失值和准确率值了。

这时候将以下代码加入源代码就可以了:

train_loss = []
train_acc = []
for epoch in range(resume_epoch, num_epochs):          # 就是这一行
	###
	...
	loss = criterion(outputs, labels.long())           # 损失样例
	train_loss.append(loss.item())                     # 损失加入到列表中
	...
	epoch_acc = running_corrects.double() / trainval_sizes[phase]    # 准确率样例
	train_acc.append(epoch_acc.item())                 # 准确率加入到列表中
	... 
with open("./train_loss.txt", 'w') as train_los:
    train_los.write(str(train_loss))

with open("./train_acc.txt", 'w') as train_ac:
     train_ac.write(str(train_acc))

这样就算完成了损失值和准确率值的数据存储了!

二、绘制 loss 曲线

主要需要 numpy 库和 matplotlib 库。

pip install numpy malplotlib

首先,将 .txt 文件中的存储的数据读取进来,以下是读取函数:

import numpy as np

# 读取存储为txt文件的数据
def data_read(dir_path):
    with open(dir_path, "r") as f:
        raw_data = f.read()
        data = raw_data[1:-1].split(", ")   # [-1:1]是为了去除文件中的前后中括号"[]"

    return np.asfarray(data, float)

然后,就是绘制 loss 曲线部分:

if __name__ == "__main__":

	train_loss_path = r"/train_loss.txt"   # 存储文件路径
	
	y_train_loss = data_read(train_loss_path)        # loss值,即y轴
	x_train_loss = range(len(y_train_loss))			 # loss的数量,即x轴

	plt.figure()

    # 去除顶部和右边框框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('iters')    # x轴标签
    plt.ylabel('loss')     # y轴标签
	
	# 以x_train_loss为横坐标,y_train_loss为纵坐标,曲线宽度为1,实线,增加标签,训练损失,
	# 默认颜色,如果想更改颜色,可以增加参数color='red',这是红色。
    plt.plot(x_train_loss, y_train_loss, linewidth=1, linestyle="solid", label="train loss")
    plt.legend()
    plt.title('Loss curve')
    plt.show()
    pit.savefig("loss.png")

这样就算把损失图像画出来了!如下:

三、绘制准确率曲线

有了上面的基础,这就简单很多了。

只是有一点要记住,上面的x轴是迭代次数,这里的是训练轮次 epoch。

if __name__ == "__main__":

	train_acc_path = r"/train_acc.txt"   # 存储文件路径
	
	y_train_acc = data_read(train_acc_path)       # 训练准确率值,即y轴
	x_train_acc = range(len(y_train_acc))			 # 训练阶段准确率的数量,即x轴

	plt.figure()

    # 去除顶部和右边框框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('epochs')    # x轴标签
    plt.ylabel('accuracy')     # y轴标签
	
	# 以x_train_acc为横坐标,y_train_acc为纵坐标,曲线宽度为1,实线,增加标签,训练损失,
	# 增加参数color='red',这是红色。
    plt.plot(x_train_acc, y_train_acc, color='red',linewidth=1, linestyle="solid", label="train acc")
    plt.legend()
    plt.title('Accuracy curve')
    plt.show()
    pit.savefig("acc.png")

这样就把准确率变化曲线画出来了!如下:

以下是完整代码,以绘制准确率曲线为例,并且将x轴换成了iters,和损失曲线保持一致,供参考:

import numpy as np
import matplotlib.pyplot as plt

# 读取存储为txt文件的数据
def data_read(dir_path):
    with open(dir_path, "r") as f:
        raw_data = f.read()
        data = raw_data[1:-1].split(", ")

    return np.asfarray(data, float)


# 不同长度数据,统一为一个标准,倍乘x轴
def multiple_equal(x, y):
    x_len = len(x)
    y_len = len(y)
    times = x_len/y_len
    y_times = [i * times for i in y]
    return y_times


if __name__ == "__main__":

    train_loss_path = r"/train_loss.txt"
    train_acc_path = r"/train_acc.txt"

    y_train_loss = data_read(train_loss_path)
    y_train_acc = data_read(train_acc_path)

    x_train_loss = range(len(y_train_loss))
    x_train_acc = multiple_equal(x_train_loss, range(len(y_train_acc)))

    plt.figure()

    # 去除顶部和右边框框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('iters')
    plt.ylabel('accuracy')

    # plt.plot(x_train_loss, y_train_loss, linewidth=1, linestyle="solid", label="train loss")
    plt.plot(x_train_acc, y_train_acc,  color='red', linestyle="solid", label="train accuracy")
    plt.legend()

    plt.title('Accuracy curve')
    plt.show()
    pit.savefig("acc.png")

总结 

到此这篇关于如何使用python的plot绘制loss、acc曲线并存储成图片的文章就介绍到这了,更多相关python plot绘制loss、acc曲线存储成图片内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python 非极大值抑制(NMS)的四种实现详解

    Python 非极大值抑制(NMS)的四种实现详解

    本文主要介绍了非极大值抑制(Non-Maximum Suppression,NMS)的四种实现方式,不同方法对NMS速度的影响各不相同,感兴趣的小伙伴可以了解一下
    2021-11-11
  • python 如何获取文件夹中的全部文件

    python 如何获取文件夹中的全部文件

    在神经网络准备训练集的时候,经常需要从文件夹中读取全部图片。经常遇到的有两种方式,一种是os.listdir()另一种是glob,本文结合示例代码对python获取文件夹中全部文件讲解的非常详细,需要的朋友参考下吧
    2023-01-01
  • Django1.11自带分页器paginator的使用方法

    Django1.11自带分页器paginator的使用方法

    这篇文章主要为大家详细介绍了Django1.11自带分页器Django的使用方法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-10-10
  • Python 正则表达式大全(推荐)

    Python 正则表达式大全(推荐)

    正则表达式是对字符串操作的一种逻辑公式,正则表达式是一种文本模式,该模式描述在搜索文本时要匹配的一个或多个字符串。本文重点给大家介绍Python 正则表达式大全,感兴趣的朋友一起看看吧
    2021-11-11
  • appium+python自动化配置(adk、jdk、node.js)

    appium+python自动化配置(adk、jdk、node.js)

    这篇文章主要介绍了appium+python自动化配置(adk、jdk、node.js),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • 解决pyinstaller打包pyqt5的问题

    解决pyinstaller打包pyqt5的问题

    今天小编就为大家分享一篇解决pyinstaller打包pyqt5的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python实现批量提取Word文档表格数据

    Python实现批量提取Word文档表格数据

    在大数据处理与信息抽取领域中,Word文档是各类机构和个人普遍采用的一种信息存储格式,本文将介绍如何使用Python实现对Word文档中表格的提取,感兴趣的可以了解下
    2024-03-03
  • Python迭代器Iterable判断方法解析

    Python迭代器Iterable判断方法解析

    这篇文章主要介绍了Python迭代器Iterable判断方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • Python利用psutil库进行监控进程和资源

    Python利用psutil库进行监控进程和资源

    psutil是Python系统和进程工具库,它提供了一种跨平台的方式来获取系统信息、管理系统进程、监控系统性能、操作系统资源等,下面就跟随小编一起来学习psutil库的具体应用吧
    2024-01-01
  • Python中input和raw_input的一点区别

    Python中input和raw_input的一点区别

    这篇文章主要介绍了Python中input和raw_input的一点区别,它们都是用来读取控制台输入的函数,需要的朋友可以参考下
    2014-10-10

最新评论